OSPREY: protein design with ensembles, flexibility, and provable algorithms.

نویسندگان

  • Pablo Gainza
  • Kyle E Roberts
  • Ivelin Georgiev
  • Ryan H Lilien
  • Daniel A Keedy
  • Cheng-Yu Chen
  • Faisal Reza
  • Amy C Anderson
  • David C Richardson
  • Jane S Richardson
  • Bruce R Donald
چکیده

UNLABELLED We have developed a suite of protein redesign algorithms that improves realistic in silico modeling of proteins. These algorithms are based on three characteristics that make them unique: (1) improved flexibility of the protein backbone, protein side-chains, and ligand to accurately capture the conformational changes that are induced by mutations to the protein sequence; (2) modeling of proteins and ligands as ensembles of low-energy structures to better approximate binding affinity; and (3) a globally optimal protein design search, guaranteeing that the computational predictions are optimal with respect to the input model. Here, we illustrate the importance of these three characteristics. We then describe OSPREY, a protein redesign suite that implements our protein design algorithms. OSPREY has been used prospectively, with experimental validation, in several biomedically relevant settings. We show in detail how OSPREY has been used to predict resistance mutations and explain why improved flexibility, ensembles, and provability are essential for this application. AVAILABILITY OSPREY is free and open source under a Lesser GPL license. The latest version is OSPREY 2.0. The program, user manual, and source code are available at www.cs.duke.edu/donaldlab/software.php. CONTACT [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast search algorithms for computational protein design

One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state-of-the-art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitude...

متن کامل

BBK* (Branch and Bound over K*): A Provable and Efficient Ensemble-Based Algorithm to Optimize Stability and Binding Affinity over Large Sequence Spaces

Protein design algorithms that compute binding affinity search for sequences with an energetically favorable free energy of binding. Recent work shows that the following design principles improve the biological accuracy of protein design: ensemble-based design and continuous conformational flexibility. Ensemble-based algorithms capture a measure of entropic contributions to binding affinity, Ka...

متن کامل

Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility.

Computational protein and drug design generally require accurate modeling of protein conformations. This modeling typically starts with an experimentally determined protein structure and considers possible conformational changes due to mutations or new ligands. The DEE/A* algorithm provably finds the global minimum-energy conformation (GMEC) of a protein assuming that the backbone does not move...

متن کامل

Fast gap-free enumeration of conformations and sequences for protein design.

Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biologica...

متن کامل

comets (Constrained Optimization of Multistate Energies by Tree Search): A Provable and Efficient Protein Design Algorithm to Optimize Binding Affinity and Specificity with Respect to Sequence

Practical protein design problems require designing sequences with a combination of affinity, stability, and specificity requirements. Multistate protein design algorithms model multiple structural or binding "states" of a protein to address these requirements. comets provides a new level of versatile, efficient, and provable multistate design. It provably returns the minimum with respect to se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods in enzymology

دوره 523  شماره 

صفحات  -

تاریخ انتشار 2013